Use of wood-plastic composites in 4D printing technology

Uporaba lesno-plastičnih kompozitov v tehnologiji 4D tiska

  • Daša Krapež Tomec
  • Aleš Straže
  • Matevž Kokot
  • Manja Kitek Kuzman
  • Mirko Kariž
Keywords: 3D printing, 4D printing, wood-plastic composites, shape memory materials


Three-dimensional (3D) printing with wood-plastic composites is already well known, and the use of wood in four-dimensional (4D) printing is being increasingly explored. 4D printing is an evolving area of additive technologies where, with the appropriate design of 3D printing and use of appropriate materials, we can create products that change shape and form dynamic structures when triggered externally. In 4D printing, the hygroscopicity of wood – usually considered a disadvantage – can be used as a positive property to design products that change their shape according to climatic conditions, especially humidity.

In this research, we used the FDM (fused deposition modelling) technology of 3D printing PLA (polylactic acid) and wood-plastic composites (wood-PLA) to produce specimens with different material proportions, whose response to changing climatic conditions we monitored. To monitor the change in shape, or curvature, we fabricated composite test specimens using the bimetal principle (actuators), in which we used PLA for the passive layer and wood-PLA for the active layer in different thickness ratios and exposed them to laboratory and external conditions.

The results showed that the wood content of the wood-plastic composites leads to dimensional changes in a changing climate, resulting in changes in the shape of the designed actuators. The change in shape depends on the thickness ratio of the layers in the two-layer actuator, the sorption of water vapor, and the wood content in the wood-plastic composite used.


Ayrilmis, N., Kariz, M., Kwon, J. H., & Kitek Kuzman, M. (2019). Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. International Journal of Advanced Manufacturing Technology, 102(5–8), 2195–2200. DOI:

Balatinecz, J. J., & Park, B. D. (1997). The effects of temperature and moisture exposure on the properties of wood-fiber thermoplastic composites. Journal of Thermoplastic Composite Materials, 10(5), 476–487. DOI:

Chen, D., Liu, Q., Han, Z., Zhang, J., Song, H. L., Wang, K., … & Shi, Y. (2020). 4D Printing Strain Self-Sensing and Temperature Self-Sensing Integrated Sensor–Actuator with Bioinspired Gradient Gaps. Advanced Science, 7(13), 1–9. DOI:

Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., & Speck, T. (2021). Bio-Inspired Motion Mechanisms: Computational Design and Material Programming of Self-Adjusting 4D-Printed Wearable Systems. Advanced Science.

Cheng, T., Wood, D., Wang, X., Yuan, P. F., & Menges, A. (2021). Programming material intelligence: an additive fabrication strategy for self-shaping Biohybrid components. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12413 LNAI, 36–45. DOI:

Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., Yu, H., & Liu, L. (2020). 4D printing: A review on recent progresses. In Micromachines (Vol. 11, Issue 9). MDPI AG. DOI:

Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A., & Tibbits, S. (2015). 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Printing and Additive Manufacturing, 2(3), 106–116. DOI:

Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167). DOI:

El-Dabaa, R., & Salem, I. (2021). 4D printing of wooden actuators: encoding FDM wooden filaments for architectural responsive skins. Open House International, ahead-of-print(ahead-of-print). DOI:

Erb, R. M., Sander, J. S., Grisch, R., & Studart, A. R. (2013). Self-shaping composites with programmable bioinspired microstructures. Nature Communications 2013 4:1, 4(1), 1–8. DOI:

Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552–1596. DOI:

Kariž, M., Šernek, M., & Kitek Kuzman, M. (2018a). Effect of humidity on 3d-printed specimens from wood-pla filaments.

Kariž, M., Šernek, M., Obućina, M., & Kuzman, M. K. (2018b). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135–140. DOI:

Krapež Tomec, D., Straže, A., Haider, A., & Kariž, M. (2021). Hygromorphic Response Dynamics of 3D-Printed Wood-PLA Composite Bilayer Actuators. Polymers, 13, 3209.

Le Duigou, A., & Castro, M. (2015). Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Industrial Crops and Products, 71, 1–6. DOI:

Le Duigou, A., & Castro, M. (2017). Hygromorph BioComposites: Effect of fibre content and interfacial strength on the actuation performances. Industrial Crops and Products, 99, 142–149. DOI:

Le Duigou, A., Castro, M., Bevan, R., & Martin, N. (2016). 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials & Design, 96, 106–114. DOI:

Le Duigou, A., Requile, S., Beaugrand, J., Scarpa, F., & Castro, M. (2017). Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 26(12), 125009. DOI:

Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., & Castro, M. (2020). A review of 3D and 4D printing of natural fibre biocomposites. In Materials and Design (Vol. 194). Elsevier Ltd. DOI:

Le Duigou, A., Requile, S., Beaugrand, J., Scarpa, F., & Castro, M. (2017). Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 26(12), 125009. DOI:

Manen, T. van, Janbaz, S., & Zadpoor, A. A. (2017). Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons, 4(6), 1064–1069. DOI:

Martikka, O., Kärki, T., & Wu, Q. L. (2018). Mechanical Properties of 3D-Printed Wood-Plastic Composites. Key Engineering Materials, 777, 499–507.

Rayate, A., & Jain, P. K. (2018). A Review on 4D Printing Material Composites and Their Applications. Materials Today: Proceedings, 5(9), 20474–20484. DOI:

Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50–69. DOI:

Rüggeberg, M., & Burgert, I. (2015). Bio-Inspired Wooden Actuators for Large Scale Applications. PLOS ONE, 10(4), e0120718. DOI:

Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162. DOI:

Timoshenko, S. P. (1953). The Collected Papers of Stephen P. Timoshenko. (Book, 1953) []. (n.d.). Retrieved June 10, 2021, from

Vazquez, E., Randall, C., & Duarte, J. P. (2019). Shape-changing Architectural Skins A Review on Materials, Design and Fabrication Strategies and Performance Analysis. Journal of Facade Design and Engineering, 7(2), 93–114. DOI:

Zhou, J., & Sheiko, S. S. (2016). Reversible shape-shifting in polymeric materials. Journal of Polymer Science, Part B: Polymer Physics, 54(14), 1365–1380. DOI:

How to Cite
Krapež Tomec, D., Straže, A., Kokot, M., Kitek Kuzman, M., & Kariž, M. (2021). Use of wood-plastic composites in 4D printing technology. Les/Wood, 70(2), 53-69.