Analysing the effect of thermal modification on the calorific values of Eucalyptus nitens wood

Analiza vpliva termične modifikacije na kalorično vrednost lesa Eucalyptus nitens

  • Saurav Nepal
  • Rupert Wimmer
  • Volker Zelinski
Keywords: Eucalyptus nitens, gross calorific value, net calorific value, thermal modification, cellulose, hemicellulose, lignin, extractives


Gross and net calorific value of 13 samples of Eucalyptus nitens wood were determined at HAWK (Hochschule für Angewandte Wissenschaft und Kunst), Göttingen, Germany. Among 13 samples, 12 were thermally modified and one was unmodified. Calorific values of samples were determined by using a bomb calorimeter, and the wood components (cellulose, hemicellulose, lignin, and extractives) already analysed by Wentzel et al. (2019). After determination of the values, samples were statistically analysed by R studio to find the relations among the calorific value, temperature, and wood components. The gross calorific value and net calorific value of the untreated sample of Eucalyptus nitens were found to be 18.83 MJ/kg and 17.48 MJ/kg, and after thermal modification these increased up to 20.24 MJ/kg and 18.84 MJ/kg. Upon statistical analysis, the results for lignin showed a strong correlation with the temperature of thermal treatment and calorific value.


Acar, S., Ayanoglu, A., & Demirbas, A. (2012). Determination of higher heating values (HHVs) of biomass fuels. Energy Education Science and Technology Part A: Energy science and Research 28(2), 749-758.

Bak, M., & Nemeth, R. (2012). Modification of wood by oil heat treatment. International Scientific Development & Ecological Footprint.

Bhuiyan, T. R., & Hirai, N. (2005). Study of crystalline behavior of heat-treated wood cellulose during treatments in water. Journal of Wood Science, 51(1), 42-47.

Bourgois, J., Bartholin, M. C., & Guyonnet, R. (1989). Thermal treatment of wood: analysis of the obtained product. Wood Science and Technology, 23(4), 303-310.

Calonego, F. W., Severo, E. T. D., Sansígolo, C. A., de Rezende, M. A., Bruder, E. M., & Costa, V. E. (2016). Calorific Value and Chemical Properties in Juvenile and Mature Wood of Thermally-Modified Eucalyptus Grandis. Wood Industry/Drvna Industrija, 67(3), 207-214.

Demirbaş, A. (2001). Relationships between lignin contents and heating values of biomass. Energy conversion and management, 42(2), 183-188.

Dhamodaran, T. K., Gnanaharan, R., & Thulasidas, P. K. (1989). Calorific value variation in coconut stem wood. Wood Science and Technology, 23(1), 21-26.

Esteves, B., & Pereira, H. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370-404.

Esteves, B., Graca, J., & Pereira, H. (2008). Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62(3), 344-351.

Homan, W. J., & Jorissen, A. J. (2004). Wood modification developments. Heron, 49(4), 360-369.

ISO 18125 (2017) Solid biofuels – Determination of calorific value.

Kol, H. Ş., SefiL, Y., & Keskin, S. A. (2015). Effect of heat treatment on the mechanical properties, and dimensional stability of fir wood. In 27th İnternational Conference Research for the furniture industry (pp. 17-18).

Ngangyo-Heya, M., Foroughbahchk-Pournavab, R., Carrillo-Parra, A., Rutiaga-Quiñones, J. G., Zelinski, V., & Pintor-Ibarra, L. F. (2016). Calorific value and chemical composition of five semi-arid Mexican tree species. Forests, 7(3), 58.

Rapp, A. O. (2001). Review on heat treatments of wood. In Proceedings of special seminar, Antibes, France.

TAPPI (1997). Solvent extractives of wood and pulp. Test method T 204 cm-07.

Telmo, C., & Lousada, J. (2011a). Heating values of wood pellets from different species. Biomass and bioenergy, 35(7), 2634-2639.

Telmo, C., & Lousada, J. (2011b). The explained variation by lignin and extractive contents on higher heating value of wood. Biomass and bioenergy, 35(5), 1663-1667.

Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., & Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149.

Todaro, L., Dichicco, P., Moretti, N., & D’Auria, M. (2013). Effect of combined steam and heat treatments on extractives and lignin in sapwood and heartwood of Turkey oak (Quercus cerris L.) wood. BioResources, 8(2), 1718-1730.

Todaro, L., Rita, A., Cetera, P., & D’Auria, M. (2015). Thermal treatment modifies the calorific value and ash content in some wood species. Fuel, 140, 1-3.

Trossero, M. A. (2002). Wood energy: the way ahead. Unasylva, 53(4), 3-12.

Wentzel, M., Fleckenstein, M., Hofmann, T., & Militz, H. (2019). Relation of chemical and mechanical properties of Eucalyptus nitens wood thermally modified in open and closed systems. Wood Material Science & Engineering, 14(3), 165-173.

White, R. H. (2007). Effect of lignin content and extractives on the higher heating value of wood. Wood and fiber science, 19(4), 446-452.

Wikberg, H., & Maunu, S. L. (2004). Characterisation of thermally modified hard-and softwoods by 13C CPMAS NMR. Carbohydrate polymers, 58(4), 461-466.

Willems, W. (2009). A novel economic large-scale production technology for high-quality thermally modified wood. In Proceedings of the 4th European conference on wood modification, Stockholm, Sweden (pp. 31-35).

Yildiz, S., Gezer, E. D., & Yildiz, U. C. (2006). Mechanical and chemical behavior of spruce wood modified by heat. Building and environment, 41(12), 1762-1766.

How to Cite
Nepal, S., Wimmer, R., & Zelinski, V. (2021). Analysing the effect of thermal modification on the calorific values of Eucalyptus nitens wood. Les/Wood, 70(2), 19-29.