Thermal conductivity of different bio-based insulation materials

Toplotna prevodnost različnih bio-izolacijskih materialov

  • Sergej Medved
  • Eugenia Mariana Tudor
  • Marius Catalin Barbu
  • Timothy M. Young
Keywords: thermal conductivity, insulation, particleboard, wood particles, bark

Abstract

To achieve the zero-waste goal as well as sustainability, the use of the raw materials, especially those from nature, and wood in particular, has to be smart, meaning that the resource has to be used to its full potential. Since wood-based industry is associated with high intensity and the generation of a relatively large amount of residues, those residues should be used for the production of useful products, otherwise they will easily be classified as waste and afterwards used as a source of energy. To present a possible solution for wood residues like wood chips, wood particles and bark, we investigated the possibility of using wood and bark residues as constituents for the production of single layer insulation panel with a target thickness of 40 mm and target density of 0.2 g·cm-3. Thermal conductivity was determined using the steady state principle at three different temperature settings. The average thermal conductivities were determined between 49 mW·m-1·K-1 and 74 mW·m-1·K-1. The highest values were determined at boards made from bark, which also had the highest density (0,291 g·cm-3), while the lowest thermal conductivity was observed for boards made from spruce wood particles.

References

Antonović, A., Jambreković, V., Franjić, J., Španić, N., Pervan, S., Ištvanić, J., & Bublić, A. (2010). Influence of sampling location on content and chemical composition of the beech native lignin (Fagus sylvatica L.). Periodicum Biologorum, 112(3), 327-332.

Antonović, A., Barčić, D., Kljak, J., Ištvanić, J., Podvorec, T., & Stanešić, J. (2018). The quality of fired Aleppo pine wood (Pinus halepensis Mill.). Biomass for Biorefinery Products. Croatian Journal of Forest Engineering, 39(2), 313-324.

Blanchet, P., Cloutier, A., & Riedl, B. (2000). Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology, 34(1), 11-19.

Cameron, F. A., & Pizzi, A. (1985). Tannin-induced formaldehyde release depression in urea formaldehyde particleboard. In: Meyer, B., Kottes-Andrews, B. A., Reinhardt, R.M. (ed.), Formaldehyde Release from Wood Products. American Chemical Society Symposium Series, No. 316, Washington, DC, Chapter 15, pp 205.

Čop, M., Laborie, M. P., Pizzi, A., & Šernek, M. (2015). Curing characterisation of spruce tannin-based foams using the advanced isoconversional method. BioResources, 9(3), 4643-4655.

Deppe, H. J., & Hoffman, A. (1972). Particleboard experiments. Utilize softwood bark waste. World Wood 13(7), 8-10.

Dost, W. A. (1971). Redwood bark fiber in particleboard. Forest Products Journal, 21(10), 38-43.

Gupta, G., Yan, N., & Feng, M. W. (2011). Effects of pressing temperature and particle size on bark board properties made from Beetle-infested lodgepole pine (Pinus contorta) Barks. Forest Products Journal, 61(6), 478-488.

Kain, G., Güttler, V., Barbu, M. C., Petutschnigg, A., Richter, K., & Tondi, G. (2014). Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products, 72, 417-424.

Lehmann, W. F., & Geimer, R. L. (1974). Properties of structural particleboards from Douglas-fir forest residues. Forest Products Journal, 24(10), 17-25.

Maloney, T. M. (1973). Bark boards from four west coast softwood species. Forest Products Journal, 23(8), 30-38.

Martin, R. E. (1963). Thermal properties of bark. Forest Products Journal, 13, 419-426.

Medved, S., Gajšek, U., Tudor, E. M., Barbu, M. C., & Antonović, A. ( 2019). Efficiency of bark for reduction of formaldehyde emission from particleboards. Wood Research, 64(2), 307-316.

Miranda, I., Gominho, J., & Pereira, H. (2012). Incorporation of bark tops in Eucalyptus globulus wood pulping. BioResources, 7(3), 4350-4361.

Muszynski, Z., & McNatt, J. D. (1984). Investigations on the use of spruce bark in the manufacture of particleboard in Poland. Forest Products Journal, 34(1), 28-35.

Nemli, G., & Colakoglu, G. (2005). Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agricultural Forestry, 29(3), 227-230.

Pásztory, Z., Ronyecz Mohácsiné, I., Gorbacheva, G., & Börcsökr, Z. (2016). The Utilization of Tree Bark. BioResources, 11(3), 7859-7888.

Pizzi, A. (2008) Tannins: Major sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources (1st ed.), Gandini, A., Naceur Belgacem, M., Elsevier, Oxford, pp 179-199.

Place, T. A., & Maloney, T. M. (1977). Internal bond and moisture response properties of three-layer, wood bark boards. Forest Products Journal, 27(3), 50-54.

Prasetya, B., & Roffael, E. (1991). Untersuchenegen über das Verhalten extraktstoffreicher Rinden in Holzspanplatten zur Reaktivität der Fichtenrinde gegenüber Formaldehyd. Holz als Roh- und Werkstoff, 49, 341-344.

Ružiak, I., Ignaz, R., Krišťak, L., Réh, R., Mitterpach, J., Očkajová, A., & Kučerka, M. (2017). Influence of urea-formaldehyde adhesive modification with beech bark on chosen properties of plywood. BioResources, 12(2), 3250-3264.

Sato, Y., Konishi, T., & Takahashi, A. (2009). Development of Insulation Material Using Natural Tree Bark. (2009, April, 2). Retrieved from http://techsrv.eng.utsunomiya-u.ac.jp/~yutaka/e-house/031007ICAM.pdf

Skogsberg, K., & Lundberg, A. (2005). Wood chips as thermal insulation of snow. Cold Regions Science and Technology, 43, 207–218.

Sonderegger, W., & Niemz, P. (2009). Thermal conductivity and water vapour transmission properties of wood-based materials. European Journal of Wood and Wood Products, 67, 313–321.

Suzuki, S., Saito, F., & Yamada, M. (1994). Properties of bark-wood particle composite board. Mokuzai Gakkaishi, 40(3), 287-292.

Takano, T., Murakami, T., Kamitakahara, H., & Nakatsubo, F. (2008). Formaldehyde absorption by karamatsu (Lari leptolepis) bark. Journal of Wood Science, 54, 332-336.

Tondi, G., & Pizzi, A. (2009). Tannin-based rigid foams: a survey of chemical and physical properties. Bioresource Technology, 100, 5162-5169.

Tondi, G., Haurie, L., Wieland, S., Petutschnigg, A., Lacasta, A., & Monton, J. (2014). Comparison of disodium octaborate tetrahydrate-based and tannin-boron-based formulations as fire retardant for wood structures. Fire and Materials, 38, 381-390.

Tudor, E. M., Barbu, M. C., Petutschnigg, A., & Réh, R. (2018). Added-value for wood bark as a coating layer for flooring tiles. Journal of Cleaner Production, 170, 1354-1360.

Wang, Y., & Fukuda, H. (2016). Timber Chips as the Insulation Material for EnergySaving in Prefabricated Offices. Sustainability 8, 587-599.

Yemele, M. C. N., Blanchet, P., Cloutier, A., & Koubaa, A. (2008). Effect of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. Forest Products Journal, 58(11), 48-56.

EN (2002). Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Products of high and medium thermal resistance. (EN 12667: 2002)

Published
2021-06-28
How to Cite
Medved, S., Tudor, E. M., Barbu, M. C., & Young, T. M. (2021). Thermal conductivity of different bio-based insulation materials. Les/Wood, 70(1), 73-82. https://doi.org/10.26614/les-wood.2021.v70n01a05
Section
Articles