Formation of silver nanoparticles on lignin and two of its precursors

Tvorba srebrovih nanodelcev na ligninu in njegovih dveh prekurzorjih

  • Sebastian Dahle
  • Lienhard Wegewitz
  • Wolfgang Viöl
  • Wolfgang Maus-Friedrichs
Keywords: Coniferyl Alcohol, Lignin, Metastable Induced Electron Spectroscopy, Nanoparticle, Silver, Sinapyl Alcohol, Ultraviolet Photoelectron Spectroscopy, X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy

Abstract

Metastable Induced Electron Spectroscopy, Ultraviolet Photoelectron Spectroscopy (He I and He II), X-ray Photoelectron Spectroscopy, and Atomic Force Microscopy were employed to study the interaction of silver with lignin as well as with two of its natural precursors, coniferyl alcohol and sinapyl alcohol. For all three of them, no chemical interaction between the adsorbed silver and the organic substrate was found before contact with air. Nevertheless, silver nanoparticles were found in all three cases after contact with air. Thus, a process of silver nanoparticle formation during the decomposition of the organic molecules is suggested, similar to the previously found catalytic decomposition of cinnamyl alcohol by water in the presence of silver atoms.

References

Calonego, F. W., Severo, E. T. D., & Ballarin, A. W. (2012). Physical and mechanical properties of thermally modified wood from E. grandis. Eur. J. Wood Prod. 70:453–460.

Chelvayohan, M., & Mee, C. H. B. (1982). Work function measurements on (110), (100) and (111) surfaces of silver. J. Phys. C: Solid State Phys. 15:2305-2312.

Chuang, H. Y., & Chen, D. H. (2009). Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology 20:105704.

Dahle, S., Marschewski, M., Wegewitz, L., Viöl, W., & Maus-Friedrichs, W. (2012). Silver nano particle formation on Ar plasma - treated cinnamyl alcohol. J. Appl. Phys. 111:034902.

Dahle, S., Höfft, O., Viöl, W., & Maus-Friedrichs, W. (2014). The catalytic decomposition of silver coated cinnamyl alcohol during water exposure and the formation of silver nanoparticles. Surf. Sci. 621:133-139.

Dahle, S., Wegewitz, L., Viöl, W. & Maus-Friedrichs, M. (2021). Silver nanoparticle formation on lignin and its precursors: research data underlying the article. (TODO). Retrieved from TODO.

Ding, X., Richter, D. L., Matuana, L. M., & Heiden, P. A. (2011). Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohyd. Polym. 86:58-64.

Dweydari, A. W., & Mee, C. H. B. (1975). Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi A 27:223-230.

Ertl, G., & Kuppers, J. (1985). Low Energy Electrons and Surface Chemistry, VCH Verlag, Weinheim.

Haensel, T., Reinmöller, M., Lorenz, P., Beenken, W. J. D., Krischok, S., & Ahmed, S. I. U. (2012). Valence band structure of cellulose and lignin studied by XPS and DFT. Cellulose 19:1005-1011.

Harada, Y., Masuda, S., & Ozaki, H. (1997). Electron spectroscopy using metastable atoms as probes for solid surfaces. Chem. Rev. 97:1897.

Humar, M., Budija, F., Hrastnik, D., Lesar, B., & Petrič, M. (2011). Potentials of Liquefied CCB Treated Waste Wood for Wood Preservation. Drvna Industrija 62:213-218.

Ilic, V., Saponjic, Z., Vodnic, V., Lazovic, S., Dimitrijevic, S., Jovancic, P., Nedeljkovic, J. M., & Radetic, M. (2010). Bactericidal Efficiency of Silver Nanoparticles Deposited onto Radio Frequency Plasma Pretreated Polyester Fabrics. Ind. Eng. Chem. Res. 49:7287-7293.

Jablonski, A. (1995). Database of correction parameters for the elastic-scattering effects in XPS. Surf. Interface Anal. 23:29-37.

Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., & Matsuzawa, S. (2005). Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Appl. Catal. B - Environ 57:109-115.

Kimura, K., Katsumata, S., Achiba, Y., Yamazaki, T., & Iwata, S. (1981). Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules. Japan Scientific Societies Press, Tokyo and Halsted Press, New York.

Klarhöfer, L., Voigts, F., Schwendt, D., Roos, B., Viöl, W., Höfft, O., & Maus-Friedrichs, W. (2007). Fundamental study of the interaction of Ti atoms with spruce surfaces. Holzforschung 61:523-527.

Klarhöfer, L., Roos, B., Viöl, W., Höfft, O., Dieckhoff, S., Kempter, V., & Maus-Friedrichs, W. (2008). Valence band spectroscopy on lignin. Holzforschung 62:688-693.

Klarhöfer, L. (2009). Elektronenspektroskopische Untersuchungen an funktionalisiertem Holz und Holzbestandteilen. PhD thesis at Clausthal University of Technology, ISBN 978-3-940394-74-3.

Klarhöfer, L., Viöl, W., & Maus-Friedrichs, W. (2010). Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64:331-336.

Lesar, B., Ugovsek, A., Kariz, M., Sernek, M., Humar, M., & Kralj, P. (2011). Influence of Boron compounds in adhesives on the bonding quality and fingucidal properties of wood. Wood Res. – Slovakia 56:385-392.

Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., Tam, P. K. H., Chiu, J. F., & Che, C. M. (2006). Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. J. Proteome Res. 5:916.

Maggini, S., Feci, E., Cappelletto, E., Girardi, F., Palanti, S., & DiMaggio, R. (2012). (I/O) Hybrid Alkoxysilane/Zirconium-Oxocluster Copolymers as Coatings for Wood Protection. Appl. Mater. Interfaces 4:4871−4881.

Morgner, H. (2000). The characterization of liquid and solid surfaces with metastable helium atoms. Adv. At., Mol., Opt. Phys. 42:387.

Namyslo, J. C., & Kaufmann, D.E. (2009). Chemical improvement of surfaces. Part 1: Novel functional modification of wood with covalently bound organoboron compounds, Holzforschung 63:627-632.

Powell, C., & Jablonski, A. (2010a). Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: Current status and perspectives. J. Electr. Spectr. Rel. Phen. 178:331-346.

Powell, C. J., & Jablonski, A. (2010b). NIST Electron Inelastic-Mean-Free-Path Database - Version 1.2, National Institute of Standards and Technology, Gaithersburg, MD, http://www.nist.gov/srd/nist71.cfm

Reilman, R. F., Msezane, A., & Manson, S. T. (1976). Relative intensities in photoelectron-spectroscopy of atoms and molecules. J. Electr. Spectr. Rel. Phen. 8:389-394.

Scofield, J. H. (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487eV. J. Electron Spectrosc. Relat. Phenom. 8:129-137.

Stracke, P., Krischok, S., & Kempter, V. (2001) Ag-adsorption on MgO: investigations with MIES and UPS. Surf. Sci. 473:86.

Treu, A., Larnøy, E., & Militz, H. (2011). Process related copper leaching during a combined wood preservation process. Eur. J. Wood Prod. 69:263–269.

Wan, Y., Li, Y., Wang, Q., Zhang, K., Wu, Y. (2012). The Relationship of Surface Roughness and Work Function of Pure Silver by Numerical Modeling. Int. J. Electrochem. Sci. 7:5204-5216.

Yang, K. Y., Choi, K. C., & Ahn, C. W. (2009). Surface plasmon-enhanced energy transfer in an organic light-emitting device structure. Opt. Express 17:11495-11504.
Published
2021-05-13
How to Cite
Dahle, S., Wegewitz , L., Viöl, W., & Maus-Friedrichs , W. (2021). Formation of silver nanoparticles on lignin and two of its precursors. Les/Wood, 70(1), 59-72. https://doi.org/10.26614/les-wood.2021.v70n01a03
Section
Articles